Influence of Cobalt Content on Heat Treatment Behavior and Abrasive Wear Characteristics of Multi-Component White Cast Iron

Nobuya Sasaguri^{1,a}, <u>Yuzo Yokomizo</u>^{2,b}, Kaoru Yamamoto^{3,c} and Yasuhiro Matsubara^{4,d}

 1,3 Department of Materials Science and Engineering, Kurume National College of Technology , Kurume, Japan

² KAWARA STEEL WORKS, Kawara, Japan

⁴ Fukuoka Jo Gakuin, Fukuoka, Japan

^a sasaguri@kurume-nct.ac.jp, ^b. <u>Yuzo Yokomizo@taiheiyo-eng.co.jp</u>, ^c. <u>yamamoto@kurume-nct.ac.ip</u>, ^d. matsubara@fukujo.ac.jp

Abstract. Heat treatment characteristics of multi-component white cast irons varying Co content from 0 mass% to 10 mass% were investigated, and the effects of Co content and heat treatment conditions on abrasive wear resistance were clarified using a two-body type(Suga-type) abrasion wear tester. The test pieces with 55^W x 55^H x 6^T mm in size were cut off from an ingot with 55^W x 55^H x 200^L mm which had been annealed at 1223K for 18ks. Hardening (1323K x 36ks-FAC) and tempering (673K~873K x 10.8ks-AC) were given to the test pieces. It was found that volume fraction of retained austenite (V_{ν}) of the as-cast and as-annealed specimens decreased with an increase in the Co content. However, any austenite could not be observed in the specimen with 10 mass % Co. In the hardened state, the V_{γ} of Co-free specimen was about 11 %. The V_{γ} decreased to 6 % with an addition of 2 mass % Co, but it didn't change even when Co content was increased over 2 mass%. The V_{γ} decreased with increasing the tempering temperature regardless of Co content and got to nil over 800K. Macro-hardness of specimens in the as-cast and as-annealed states decreased gradually with an increase in the Co content. In the as-hardened state, however, the hardness showed a slight decrease even when the Co content was increased up to 10 mass %. Secondary hardening occurred conspicuously in the tempered specimens regardless of the Co content, and the maximum tempered hardness (H_{Tmax}) rose as the Co content was increased. Abrasive wear resistance increased proportionally related to the hardness, being unrelated to the Co content.

Keywords: multi-component white cast iron, cobalt, heat treatment, retained austenite, secondary hardening, abrasive wear resistance

